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HETEROSCEDASTICITY

Edward J. Dudewicz, Ph. D.
Professor, Department of Staristics
The Ohio State University

Cclumbus, Ohio 43210, U. S. A.
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If one has observed n independent and identically dis-

SRR SN T e

tributed random variables Xl’ ey Xn’ it is often of in-
terest to estimate their mean u = E(Xl) and variance

a? = Var(X;). If X; has a normal distribution then

n-1

X./n and s? =} (X,-X)?/(n-1)
i sE0 01

X =

1

t~13

1
are, respectively, the usual unbiased estimators of u and
of ¢*, and are in many senses optimal estimates. Also, it

is known that

X -y -

s/vn n-1-

i.e. (X -u)/(s/v/n) has Student's-t distribution with n - 1

degrees of freedom, which allows one not only to give a

point estimate of u, but also a 100(1-g)% confidence inter-

val on u:

Key Words and Phrases: heteroscedasticity: homoscedasti-
city; transformations; unegual variances; inversion;
two-stage sampling; Heteroscedastic Method; multiple
comparisons; ANOVA.
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A problem with this interval is that its length,

21:n—l,l—%- ol
is a random variable and cannot be controlled to be (e.g.)
< 2L by choice of the sample size n. The solution of this
problem given below (Section 1) is the base of many solu-
tions to problems of heteroscedasticity.
If X; has a non-normal distribution, then X and s?

are still unbiased estimators of u and o?

, respectively.
However, X and s? are no longer independent random vari-
ables and confidence intervals for u (even with random
length) are not generally available. Moreover, X and s?
(while each asymptotically normal by the Central Limit
Theorem) are no longer optimal estimators in this setting.
Here transformations are often used, i.e. one lets

Y, = £(X;), 1 21 < n, for some function £(-) such that
£(X;) is normally distributed. Then E(Y,) and Var(Y;) can
be estimated optimally, and confidence intervals provided.
Methods are available (Section 2) for relating these esti-
mates and intervals back to u and o, the quantities of

primary interest.

If one has observations from several sources, say

Xil’ Xi?’ .+. (whieh are independent and identically

!
g




distributed) from source i (i =1, 2, ..., k), interest

is often in the means My o= E(Xil) and variances

oi = Var(X;;). Until recently, the procedures available

for these problems assumed normality and

6,2 = ... = 0, = 0 and provided performance characteris-
tics (e.g. power for a test, confidence coefficient or
length for a confidence interval, probability of correct

selection for a ranking-and-selection procedure) which

{ depended on the unknown o?. The solutions given below for
%? these problems (Sections 3, 4, 5) do not assume equal var-

iances, and yet do allow full control of such performance

characteristics as power, confidence interval length, and
probability of correct selection,

The procedures given require the experimenter to have
design-control, but generalize to any statistical problem
via the Heteroscedastic Method (Section 6). Problems of
non-normality, comparison with the usual variance-stabili-

zing-transformation approach, and other comparisons and

questions which arise in practical implementation, are

discussed throughout.

3 1. Basic Sampling Rule s ng, W,

If we are able to observe independent and identically
distributed normal random variables Xl’ X5y +.+ with mean

¥ and variance o? (both unknown), and wish tc make




inference about p, let us use the

Sampling Rule ;% (nO, w): Take an initial sample

(> 2), and calculate

Xl, cees Xno of size ng
g Mo
Y(no) : .Z Xj/ nys s? = .Z

"4 2
i4y ]_1(Xj-x (no)) /(nD—l),

N = max {n, + 1, [(ws)?]}

where W > 0 (depends on the problem under consideration)

133

and [y] denotes the smallest integer > y (e.g. [5.11 = 6

introduced because sample sizes must be integers).

Take N-rb additional observations Xn 410 e XN and
0

calculate:

N
, R(N-n,) = § X./(N-n.),
{ ° gemgn ) °
' n
: X = bR(ng) + (1-b)§(N-n0)
where —
1 n N-n
b = 79 1 - \L,- X - 0
0 (ws)?
% f and

Then Stein showed in 1945 that, for his samplir; rule

i '
X -y ;

17w m tnO--l'

|
i
b
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Therefore, i

n 1 "\
X -t a = < < ¥+t [}
no-l,1-§- W — g no-l,l—-Q—

1
1

is an exact 100(1-a)% confidence interval for p, and its
half-length can be fully controlled to a pre-set number
L > 0 by taking the arbitrary w > 0 in éB(nO, w) such thar
t a

ng=1,1-»

t T

n 1. L, i.e. w =
0 w

o
-1,1-5

Note that, since N is an increasing function of w, the
total sample size N required is larger for: smallcr» half-
length L; as well as for higher confidence l-«.

The above procedure is valid fer any preliminary sam-

ple size ng > 2. Since t a decreases as ng in-

n0-1,1—7
creases, it is reasonable to make Ny large i possible.
However, the decrease is negligible after n, > 12 or so,
hence it is reasonable to take n0=12 {or larger if one is
sure toc, e.g., take ng > B for some pos.tive integer

B >12).

The validity of the procedure for any nj (with no
"optimal" choice of ngy being obvious) bothered early work-
ers in the field and led to dis-use of these early proce-
dures. The above realization that n, > 12 is all that is

required for good results in practice as far as ng is con-

cerned is a factor leading to great current interest in
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these procedures and their extensions (sections to follow

G . AL

below). One may think of the situation as follows: cne's

total sample size N is approximately w’s?, and taking n

@

& -

N8

very small will force a large total sample size simply

cause of a poor initial estimate s?. E.g., see Table 1.

2. Basic Non-Normality and Transformations.

If Xl in Section 1 is non-normal, one cften uses

n

transformations as
El(xl) = VX —a
EQ(XI) = X
53(X1) = loglo(Xl)
Eu(Xl) = arcsin /21"

£ (X)) = sinh™! V¥ .

If one of these, say &(Xl), is normally distributed, then

the mean and variance of Yi = &(Xi) may be estimated by
n n _
Y= ] Yi/n, sy = ] (Y.-¥)'/(n-1).
j=1 ) yER

However, interest in many cases is not in E5(¥,) and

Var&(Xl), but in the original problem units, i.e. EX, and
Var(Xl). Simply using the inverse transformaticn, ©.g.
estimate Exl by

Y2 + a

in the case of El, results in a biased estimate. However,

J. Neyman and E. L. Scott showed in 1960 that the unigue

&
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minimum variance unbiased estimators of E(Xl) are as in
Table 2. General results for second order entire functions
were also given by Neyman and Scott.

In 1968 M. H. Hoyle provided the MVUE's of Var-(Xl)
and, more importantly, of the variances of the estimators
of EXj given in Table 23 see Table 3. These latter can
be used to obtain approximate 95% confidence intervals for

EX e.g. when using VK, -a:

1’
ue¥3+a+t (1-1)s2 22¥3s? T2+s3 ((1-1)2-030(1-2(1-2)%+3(1-0) ")),

Rsioridih,
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3. Heteroscedasticity (Several Sources): Tests.
If xil’ Xi?’ ... are independent and identically dis-

tributed normal random variables with mean My and variance

c.?2

i (i =1, 2, ..., k), then one talks of homoscedasticity

if 012 T ... = okz, and of heteroscedasticity otherwise.
Experimenters have often been cautioned that "the assump-
tion of equal variability should be investigated" (e.g. by
Cochran and Cox in 1957, by Juran, Gryna, and Bingham in
1374), but no exact statistical procedures have been avail-
able for dealing with cases where one finds that variabili-
ties are in fact unequal. (A variance-stabilizing trans-
formation is commonly employed, e.g. arcsin for binomial
data; however, if Xij is normal, then E(Xij) will be non-
normal: the transformation method has not been developed
to handle this problem except in special cases, and even
there one deals not with the parameters Hys »res by of
basic interest if one uses such a transofrmation, but
rather with some transform whose meaning, i.e. interpreta-
bility, will not often be clear. We do not therefore re-
gard transformations as of general use in cases of k > 2
when p,, ...,y are parameters of natural interest (not
arbitrary parametrizations).)

It was first developed in the 1970's by E. J. Dudewicsz
that, applying sampling procedure SB(nD, w) of Section 1

separately to each source of observations, cne would obtain

o Bt i o it nistmso s SR ERE
.
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the ability to fully control the performance characteris-
tics of statistical procedures even in the presence of

hetercscedasticity. Let %i denote the result of applying
X

the sampling procedure to Xi (i =1, 2, ..., k).

10 320 v
In the case k = 1 one can develop procedures (as in Section
2) using %, but if one replaces this by X at the end then
the procedure is still valid. In fact, it has sliightly
better performance characteristics (higher power), and is
even simpler (X being simpler than %, the latter being a
random-weighted combination of the sample means of the
first and second stages of sampling). However, this im-

provement is not large: approximately the amount that

increasing sample size from N to N + 1 will buy (one ob-

v
servation's worth). This improvement of X over X has been
shown to not hold in most situations where k > 2: in most

N Y
such cases if Yl, ceey fk are used to replace Yl, cees Yk

then the procedure no longer has the desired performance
characteristics.

We will describe the new ANOVA procedures in the con-
text of the one-way layout; similar procedures are avail-
able for higher-way layouts. In the one-way layout, we
might want to test the null hypothesis

Hg: Hy = Hp 5 ae = uk.

Define

PR mmm«m i\

¢ i g




R,

=13~

where

g =1
kg
and reject Hy if and only if
Y ’\:a
F>F
k,n0 3
~

where Fi is the upper o
’no n,

th

tribution of F. This null distribution is the same as that

of the random variable Q = igl (ti-?.)2 wh:re the {ti} are

independent identically distributed Studen:'s-t variates

with ngy-1 degreis of freedom and t. = (1/k) igl t.
Values of Fi,no obtained by a Monte Cirloc sampling

experiment, along with the power attained it various alter-

K

natives measured by § = ) (u;=7.)?, for virious given
i=1

1/w? values, are presented in Bishop and D-'2ciicz (1978).

There is a need for approximations to the jercentage points

Y
of the F statistics under the null and alt:rnative distri-

butions. Such approximations are available in the general

setting (see Dudewicz and Bishop (1979)), ind have been

studied as to goodness in special cases (s2e Bishop,

Dudewicz, Juritz, and Stephens (1978)). Coinsider firet
n

the distribution of T as ng * <. This limiting distribu-

tion is noncentral chi-square with k-1 degrees of freedom

percent point of the null dis-

U 0 S B S AB oS s+ -+
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and noncentrality parameter A = .21 wz(ui-ﬁ.)z, denoted by
x;_l(A). However numerical resui;s indicate that for

small n, the tails of this limiting distributicn are too
light to give a good approximatiin. One therefore approxi-
mates by a i(no-l)/(no-S))- Xx-1(8) random variable (in
which case F and its approximating distribution have the
same expected value under HO).

Let us illustrate with a numerical example. Supposc
we wish to test the hypothesis that 4 different chemicals
are equivalent in their effects. Suppose we decide to
take initial samples of size 10 with each treatment, want
only a 5% chance of rejecting H0 if in fact Hy is true,
and want an 85% chance of rejecting Hy if the spread among

Hys Bops Hgs My is at least 4.0 units. We then proceed,

step by step, as follows.

Step 1. (Problem specification.) Here there are k = 4
sources of observations, we desire an o = .05 level test of
HO: By = Uy 5 Mg = Uy, and if the spread among Hys Hps Hgs
M, 1s 6 = 4.0 units or more we desire power (probability

of then rejecting the false hypothesis HO) of at least

P = .85,

Step 2. (Choice of procedure.) Assuming we do not know

that oi = 0% = og = oﬁ, only procedure 8g(n,, w) can

guarantee the specifications. It requires we sample Ny
Gbservations in our first stage, and recommends ng

%g
;
{
?
3
4
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be at least 12 (though any ng > 2 will work). Suppose the

experimenter only wants to invest 40 units in first-stage

experimentation and sets ng = 10.
Step 3. (First stage.) Draw Ny = 10 independent observa-

tions from each source, with results as in Table u.

Table 4. First Stage Samples.
Chemical 1 Chemical 2 Chemical 3 Chemical &
77.189 80.522 79.417 78.001
74.466 79.306 78.017 78.358
82.746 81.91u 81.596 77,544
76.208 80.3ub 80.802 77,364
82.876 78.385 80.626 77.554
76.224 81.838 79.011 75.911
78.061 82.785 80.549 78.043
76.391 80.800 78.479 78.947
76.155 79.185 81.798 77.146
78.0u45 80.620 80.923 77.386

Step 4. (Analysis of first stage data.) We now calculate
the first stage sample variances si, s5, s%, sg» the total
N

sample sizes needed from the four sources 1> NZ’ N3, Ny»

y to be used in the second

stage analysis. The Si's are given in Table 5, along with

and the factors bl’ b2, b3, b

the other quantities. The w needed is found as follows.

et e T - &t S Wi MMWM i

Do A Lo st

e
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We desire power P% = .85 (Step 1 above) when
2 ¢2 2 2
A=Y 67 _ wi(h.0)7 4. 0w?.

n m
To set w for this power requirement, we first need to know

"When do we reject?". We know we will later reject Hy if
voA

F > F'OS where, approximately,
4,10
N na-1
F’05 0

6,10 ° ngg (7.81) = 10.04.

The 7.81 is the value a central chi-square random variable
with k = 1 = 4 = 1 = 3 degrees of freedom exceeds with pro-
bability a = .05 (see standard tables, e.g., p. 137 of
Pearson and Hartley (1970) or p. 459 of Dudewicz (1976)).

The power will be, approximately,
P[x3 (8) » 7.81]1 = .85

if (see p. 53 of the tables in Haynam, Govindarajulu, and
Lecone (1970))
A = 12.301

S0
= 3.075.

2 - 12.301

it 450 SR AR e
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Table 5. Analysis of First Stage.

%i

§: Chemical 1 | Chemical 2 [ Chemical 3 | Chemical &

2 ;. ng 10 10 10 10

§5 . Sample Mean 77.837 80.580 80.122 77.625
. si 7.9605 1.8811 1.7174 L6762
. W 1.754 1.754 1.754 1.75u
o Ny 25 11 11 11
. by .330 | .936 .939 .9€9

Step 5. (Second stage.) Draw Ni - ng observations from

source i (i = 1, 2, 3, 4), yielding Table £.

Table 6. Second Stage Samples.

i Chemical 1 Chemical 2 Chemical 3 Chemical 4 .

82.549 79.990 80.315 78.037
78.970
78,496
78.u49u
: 80.971
- 80.313
ie 76.556
. 80.115
78.659
77.697
80.590
79.647
82.733
= 80.552
79,098
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n
Step 6. (Final calculations.) We now cali:ulate the Xi and
N
F, and find

. :\i Y 4V
X, =79.079, X, = 80.688, X; = 80.197, X, = 77.597
jhd
X. = 79.390 ,
v
F = 17.38
4"
Step 7. (Final Decision.) Since F = 17.33 exceeds
N
Paoio = 10.04, we reject the null hypothesis and decide the
]
chemicals differ.
4. Heteroscedasticity (Several Sources): Confiden.e
Intervals.
The case of a confidence interval with k = 1 mean was
considered in Section 1. When k = 2, a two-sided confidence

interval of half-length L > 0 and with confidence coeffi-

cient 1-a is given by

" 'X Y
(X=X,) = L < uy - p, < (X~

if we choose (in 8y (no, w))

c, a (ng)
1-7 0

L

where ¢ is tabled in Table 7.
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i Table 7. ©;_ . (ng).
1y
1-y 10 11 12 13 1y 15 20 25 30
3 N .75 |1.03 1.02 1.02 1.01 1.01 1.00 .99 .98 .98

.80 1.29 1.28 1.27 1.26 1.26 1.25 1.24 1.23 1.22
.85 1.0 1.59 1.57 1.56 1.56 1.55 1.53 1.51 1.51
; . .90 2.00 1.%8 1.96 1.95 1.94% 1,93 1.90 11.88 1.87
.95 2.61 2.58 2.56 2.53 2.52 2.50 2.u5 2.42 2.4}
.975 §3.18 3.13 3.09 3.06 3.04 3.02 2.95 2.91 2.88
.99 3.8% 3.82 3.76 23.71 3.67 3.64 3.54 3,48 3.u45

.995 4,41 4,31 4,24 4,18 4.13 4.09 3.96 3.89 3.85

.998 15.61 5.45 5.32 5.22 5.14 5.07 4.86 4.74 4.67

Note that the corresponding test solves the Behrens-
; Fisher problem exactly in two stages, with controlled level
and power.

For k > 2, multiple-comparison proced.res are also

available for many of the usual multiple-comparison confi-

dence interval goals.

: 5. Heteroscedasticity (Several Sour:es): Ranking and
i ) Selection
'1 .- Here k > 2 and we wish to select (indifference-zone

.- formulation) that source with mean value max (ul, c e uk).

Let H[13 € e < MIk] denote the ordered values of

Mys ««+s M5 thus upyq denotes max (uy, ..., i), etc..

P N
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The performance characteristic of interest is the probabi-
1ity that we will make a correct selection (CS}, i.e. that
the population actually selected is the one which has mean
MIk] Following Bechhofer (1854), we require that our
P(CS) have at least a specified value P* (1/k < P% < 1)

whenever the largest mean is at least &% (0 < &%) more than

the next-to-largest mean; 1i.e. we regquire
P(CS) > P* whenever Mik] ~ M[k-1] > 8%,

This problem was considered by Dudewicz and Dalal (1975).

The procedure is to select that source which vields the
N n
largest of Xl’ ceey Yk; i.e.
n

n
Select L iff Xi = max(xl, cray

xl e

K7
In the sampling rule gB(nO, W) one chooses
- cpﬁ(no)
—
where cpi(ngy) (for specified values of P* and njy) is tabled
in Table 7 for k = 2, and is tabled in Dudewicz, Ramberg,
and Chen (1975) for k > 2. Approximations for k > 25 are

given by Dudewicz and Dalal (1975). Subset-selection pro-

cedures are also available there.
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6. The Heteroscedas*“ic Method.

. RN

The abcove special-case solutions have been placed into
a general theory with the Heteroscedastic fethod of Dudewic:z
and Bishop (1979). 1In a general decision-theoretic setting,
they show how to develop procedures like the above in any
problem. It is also shown that no single-stage procedurs
cen solve most such problems.

Some questions one might ask about the procedures thus
produced are as follows. First, how do they perform under
viclation of normality? Here, Iglehart (1977) has shown,
in some computational settings, that replacing s’ by a jazk-
knife estimator is sufficient to preserve the main prcper-
ties of the procedures. Other recent work (Dudewicz and
van der Meulen (1980)) shows asymptotic validity under
asymptotic normality. Second, are they preferable to com-
parable sequential procedures? Here it should be noted
that in most cases there are no "comparable" sequential pro-
cedures: the sequential procedures of Chow-Robbins type
usually mentioned only have asymptotic validity even undar
exact normality, while the 3B(n0, w)=-based two-stage proce-
dures have exact known properties. It is sometimes claimed
that the seguential procedures are more efficient, but this
is only as (e.g.) o; + 0. The so-called inefficiency of
35{n,, w) in this situation is due to the fact it then

requires N = ng+tl (since N > ng+l always) and in fact (as
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oi2 + 0) an N + 1 will suffice. This appears to have

little practical relevance, as one usually knows trivial
sample sizes will be insufficient for one's problems; it
is rather a curiosity of mathematical interest only.

As a final note, we mention that while variance-
stabilizing transformations and other approximate methods
have existed for many years, most experimental situations
are such that the problem is far from solved by these
approximate methods. TFor example, such methoeds misallocate
sample size by taking the same sample size from a treatment
with relatively small variability, as from a treatment with
relatively large variability, even though the need for ob-
servations on the latter is substantially greater and they
have a greater beneficial effect on performance character-
istics of the overall analysis. Also, procedures based on
SB(nO, w) behave acceptably even if variances are equal,
hence the equality of variances tests, which are known to
be weak in power, can be skipped and these new procedures
applied directly without regard to equality or ineguality

of variances.
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